If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+6d-4=0
a = 1; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·1·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{13}}{2*1}=\frac{-6-2\sqrt{13}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{13}}{2*1}=\frac{-6+2\sqrt{13}}{2} $
| 4(x+5)=108 | | r=0.7-0.7X | | 0.09p+0.01(8000-p)=840 | | 6.1=2.5m-4.4 | | 2x+7=35,14 | | 18x-2x^2-27=0 | | 55y=6(9y+6) | | 9x-10/7=16x | | 0.75+(90-x)=0 | | 1/7^x-1=1/2401 | | (3/8n)+1=-25 | | 5x+10=-44 | | (15a)-(54)=-9 | | (4d)-(35)=-3 | | (8x)+(7)=-9 | | (8x)=(7)=-9 | | (3y)+2/5=-1/5 | | (9)+(4b)=17 | | (2x)-(5)=15 | | (7k)-(3)=32 | | 2x=0.25+(90-x) | | M+25=4.6;m=2.9 | | 90= 10x10x | | s+(-7)=-42 | | 29=b+26 | | x3-3x2-10x=0 | | 2(x*x)-17x+36=0 | | x=x+31 | | 2x-17x+96=0 | | -5v+34=2(v-4) | | 4(3^-2x-4)=26 | | 4/7xx=25 |